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The flow near the bow of a steadily turning ship 
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The flow near the bow of a steadily turning ship is analysed using a modified 
slender-body theory. The rate of change of flow quantities in the longitudinal (2) 
direction is assumed to be greater than that implied by ‘conventional’ slender- 
body theory. As a consequence some features of high Froude number flow are 
apparent which cannot be predicted by the ‘conventional’ theory. The modified 
slender-body theory proposed requires the solution of a two-dimensional Laplace 
equation (in y and z )  but its free-surface condition still involves an x derivative. 
A Fourier-t,ransform method is used to solve this problem. A simple bow con- 
figuration of constant draft is analysed and numerical results for the free- 
surface elevation are presented. 

1. Introduction 
I n  previous work (Hirata 1 9 7 2 ~ )  a wing of zero thickness and small aspect 

ratio was used as a mathematical model to simulate the flow around a steadily 
turning ship. The shape of the wing was given by the projection of the ship hull 
on the vertical plane of symmetry and the aspect ratio or draftllength ratio 
was assumed to be small, say O(s). Since the angle of attack varies along the 
length of a ship turning steadily, a camber was added to the wing, which was then 
assumed to follow a straight path. This kind of model was also used by Fedyayev- 
skiy & Sobolev (1964) but they did not analyse the case of a cambered wing. 

In  the above-mentioned work the free-surface effects were found to be of 
higher order (as a consequence of the model adopted). However, it is expected 
that the free surface has some effect on the flow, especially in the bow region, 
where characteristics of high Froude number flow can be encountered as described 
by Ogilvie (1972) and Hirata (1972b). If the Froude number can be taken as a 
measure of the relative magnitude of the inertial and gravitational forces, taking 
the Froude number to be O( 1 )  as 8 + 0 means that neither of these forces domi- 
nates the other. This fact seems to be quite true over the major part of the ship 
length and the usual slender-body model (adopted in Hirata 1972a) can be used 
with accuracy. However, observing the region near the bow, it may be noted that 
slender-body theory does not describe precisely the flow there, i.e. the ratio of 
inertia to gravitational forces is no longer O(1) since the effects of water displace- 
ments by the moving ship are much greater than the effects of gravity. (In 
the extreme case, beyond the scope of the present analysis, water spilling 
occurs.) I n  order to analyse these different flow characteristics near the ship, a 
conveniently modified slender-body theory has been introduced. Note that in the 



254 M .  H .  Hiratn 

FIGURE 1. The co-ordinate system and definition of body. 

usual way one stretches the co-ordinates in the plane normal to  the flow by a 
factor e-l, which is a formal way of saying that the rate of change of the flow 
quantities in the transverse direction is larger than that in the longitudinal 
direction. This is t,he description assumed to be valid over most of the ship. Near 
the bow, however, one assumes that the rate of change of the flow quantities is 
greater than near the rest of the ship, and this is accomplished by stretching the 
longitudinal co-ordinate by a factor of E-4, the usual stretching in the transverse 
direction remaining unchanged. With this unconventional stretching one obtains 
a condition on the free surface near the bow similar to that used in thin-ship theory, 
but the continuity of the fluid is still expressed by a two-dimensional Laplace 
equation. This description is assumed to  be valid within a region which extends 
a distance O(s4) from the bow. A simple case of a ship of constant draft is analysed, 
and the numerical results are given in the form of a plot of the free-surface 
elevation in the region of the bow. 

2. Formulation of the problem 
DeJinitions and assumptions 

Let us adopt a co-ordinate system fixed in the ship with origin at the intersection 
of the bow and the horizontal plane defined by the undisturbed free surface. The 
n: axis is directed aft and the z axis is taken positive upwards; see figure 1. 

The wing shape (or ship contour) is defined by 

G,(s,~,z)  = ~ - h ( x )  = 0 

C , ( X , ~ , Z )  = y - b ( ~ )  = 0. 

(1) 

(2) 

and the wing surface (or ship hull) by 

The ship’s draft and beam are assumed to  be functions only of the longitudinal 
co-ordinate, since the introduction of y dependence would introduce complexity 
into the algebra without bringing any new physical insight into the problem. 
With regard to their orders of magnitude the following assumptions are made: 

L = 0(1), h(x) = O(E), b(x) = O ( E l + Y )  (0  < y < it), 
af(x, Y ) P X  = O(f(x, Y)), 

where f (x, y) is any quantity describing the hull geometry. 

tion of the boundary condition. 
t The factor y is introduced here because of problems arising later on in the transforma- 
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The free surface is described by 

G,(x, y ,  2) = z - C ( X ,  Y) = 0. (3) 

Besides the foregoing assumptions three others have to be made: that the 
fluid is ideal, that the flow is irrotational and that the problem can be linearized. 
The assumption of linearity of the problem is rather restrictive. However, the 
nonlinear problem is quite intractable and it is hoped that even the linearized 
solution can give useful information. 

The boundary-value problem 

The existence of a velocity potential 

@(x, Y, 2) = -cJx + $@, y, 4 (4) 

is assumed. The continuity equation for an incompressible fluid then requires that 

WD aw a 2 @  

8x2 ay2 a 2 2  
- +- +- = 0 in the fluid region. (5) 

The condition to be imposed on the wing surface is 

D[G0(x , y ,~ ) ] /Dt  = 0 011 Go = 0, (6) 

where hhe operator D/Dt stands for what is commonly called the substantial 
derivative. 

On the free surface the dynamic and kinematic conditions to be satisfied are 
respectively 

on G,  = 0. (7), (8) 
g c + ,  1 [ ( z ) 2 +  a@ ($)2+ (g)2] = constant 

D[G,(x, Y, z)l/Dt = 0 J 
I n  addition a proper 'radiation condition' has to be imposed in order to ensure 
the uniqueness of the solution. 

For the sake of completeness one should mention the necessity of imposing the 
Kutta condition, on the trailing edge. This condition will not be stated explicitly 
here since only the bow-region problem is studied. 

The boundary-value problem (4)-( 8) is nonlinear and will be linearized 
properly. For the solution of the linearized problem the method of matched 
asymptot>ic expansions is used, thus the existence of a near-field and a far-field 
region is assumed. In  the far field as well as in the near field the potential is 
expressed in terms of an asymptotic expansion: 

Ux +'p(x, y, z )  

Ux + #(x, y ,  z )  

in the far field, 

in the near field, 
@ = (  

where cp(z, y ,  z )  and $(x, y, z )  are perturbation potentials such that 

y(x, y ,  z )  = y, z ;  E )  +y?,(x, Y ,  2; €1 + ... I 

#(z,y,z) = $1(x,y,z; s)+$&,y,z; E ) + . . . ,  
and satisfy 

yn+l = o(y,), $n+l = o($,) as E -+ 0 with x, y, z fixed. 



3. The solution of the problem 
As mentioned above, the method of matched asymptotic expansions is used 

to solve the boundary-value problem presented in the previous section and the 
exist,ence of a far-field as well as a near-field region is therefore assumed. 

The far-jeld region 

At distances from the ship equal to or greater than unity all the fine details of the 
flow are lost and only a gross disturbance caused by the ship hull can be seen; 
this is the far-field region. Here the disturbance created by a steadily turning 
ship can be represented by a line distribution of horizontal dipoles which have a 
constant density ~ ( x )  with respect to time. A lower-order singularity, i.e. a source 
distribution, is not considered here since the ship is assumed to be of zero 
thickness. 

The Laplace equation must be satisfied in the fluid region on account of 
continuity. The conditions to be satisfied on the free surface are linearized in the 
usual way (Wehausen & Laitone 1960) and combined into a single condition to be 
satisfied on the plane of the undisturbed free surface: 

U2%$W+gay/az = o on z = 0. (9) t  
Perhaps t,he easiest way to satisfy the radiation condition, which excludes the 

possibility of waves upstream of the ship, is to introduce the ' Rayleigh fictit,ious 
viscosity' p, which is set equal to zero at  an appropriate time (see Ogilvie & Tuck 
1969). Condition (9) is then modified to 

(Ua/ax+&L)2q+gcpZ = 0 on z = 0. (10) 

The body boundary condition is not included here since it can be sa,tisfied only 
in the near-field region. 

A solution of the above boundary-value problem is given by Hirata (19723) in 
the form 

( 1 1 )  
where the asterisk indicates a Fourier transform, defined by 

The velocity potential (1 1 )  is not completely described as yet since the dipole 
density a(x) is still unknown. This density will be determined through the 
matching with the near-field solution. 

T h e  near-$eld region 
In  this region one wants to know the details of the flow near the body, and for 
that purpose the co-ordinates are stretched as indicated in 3 1. It could therefore 
be assumed that 

.z' = cix, y = € Y ,  z = €2 

t Only the first term in the perhrbation potential is considered, therefore the subscript 
1 will be omitted. 
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and alax, a/a  Y ,  alaz = o( 1 1. 
In  fact, the above notation need not be used explicitly; instead, the following 
relations will be understood to hold in the near field: 

x = o(E+), y, = o(E), a/ax = ~ ( E - B ) ,  a/ay, a/az = O ( E - 1 ) .  

The fact that the derivative in the longitudinal direction is assumed to be 
O(s-4) and the derivative in the transverse direction to be O(e-l) means that two 
different scales are used in the near field, and that the variation in the flow 
quantities in the longitudinal direction is smaller than that in the transverse 
direction. Note that this is also true in the usual slender-body theory but there 
the derivative in the longitudinal direction is assumed to be O( l),  which seems to 
put too much emphasis on gravity effects; the present assumptions are made in 
order to de-emphasize these gravity effects near the bow, which seems to be 
realist’ic in view of observations and experiments. 

Introducing the above assumptions into the boundary-value problem (4)-( 8)) 
after a straightforward expansion one gets? 

-I- $zs = 0 in the fluid region, (12) 

$,,+(g/U2)$3 = 0 on z = 0, (13) 

q5y = Ub’(0) on y = 5 0 ,  0 > z > -h,  (14) 

where only the leading terms have been included. The proper condition a t  infinity 
is given by the behaviour of (1 1) as one approaches the bow region. 

In  condition (14) it  is assumed that a McLaurin series expansion for b(x )  exists, 
only the f i s t  term being considered. The interesting feature of this problem is the 
presence of a second derivative with respect to x in condition (13). This prevents 
the use of most complex-variable methods. However, by taking the Fourier 
transform in the x direction one gets a boundary-value problem in y and z having 
the transform variable k as a parameter. 

Taking the x Fourier transform has certain implications: for instance, the body 
boundary condition gives 

and the Fourier transform of 4, is 

9, = Ub’(0) 

r$,* = 1 $,@, 0, z )  e-ikr dx,  

i.e. 4: containsinformation from - co to + co. However, for x < 0 the approxima- 
tion & = 0 on y = 0 seems to be reasonable; it is also known that in slender-body 
theory the influence of the flow downstream on the upstream region is of higher 
order. Therefore one can write approximately 

-a 

where H ( x )  is the Heaviside step function. According to Lighthill (1964, p. 33), 
one has 

where S( k) is the Dirac delta function. 

$: = Ub‘(0) [n8(k) + l / i k ] ,  

f Note that the subscript 1 is again omitted. 
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f Z  

4;,+ 9:,=0 

Prescribed conditions as lyl 

FIGURE 2. Two-dimensional boundary-value problem. 

After t:l;king the x Fourier transform of the bonndary-value problem in the 
near field, one gets the following in the transformed plane: 

$&, + $2 = 0 in the fluid domain, (15) 

( U * k 2 / y )  $* -4; = 0 011 = 0, (16) 

+$ = Ub'(0)  [mJ(k) + 1/ih] on y = 0. ( 1 7 )  

The resulting condition for [yl + cc should match the inner expansion of (11). 
The above problem is sketched in figure 2. 
It can be shown (Hirata 1972b) that the bahaviour of 'p as one appro*>.clies the 

$+ N 

bow region is given by 

= [ i vT(k) R: egg cos ay - &(k)  R: ea;  sgn k sin cly] 

+i[ T v ~ ( E ) o l e * ' c o s a y - v ~ ( k ) a e a ~ s ~ n k  sinay] 

as y- f  t m ,  (18) 

where ~ [ c T ( x ) ]  = a+(E) = c ~ X ( k )  + ia:(E), 0: = U2k2/g. 

The elementary solution (1 8) satisfies (15), (16) and, of course, the condition for 
Jyl +CC, but it is not possible to satisfy the body condition (17) using only com- 
binations of (18). However, there is another elementary solution which satisfies 
(15)  and (16) and decays t o  zero for lyl --f cc: 

#Jz = euv(zicosux+asinuz) (y 2 O ) ,  (19) 

where u is a positive real number. 

transformed plane, following Ursell (1 947), as 
One can attempt to  write the solution to  the boundary-value problem in the 

Let the body boundary condit,ion be cxpressed as 

(20) 

a$:"lay = f ( z )  + i g ( z )  (y = O ) ,  
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with 

Introducing (20) and using a lemma given by Ursell(i948) one gets 

f ( z )  = FR, g(z) = FI, F'+ iF, = F[$,(z, 0, z ) ]  (0 > z > - h). 

289 

f (z )  [p cospz + 01 sinpz] dz, 

g(z)  [p cospz + asinpz] dz. 
c(p) = rp(p2 - 2  + a2) so - m 

The continuity of the fluid a t  y = 0 requires that 

a g p y  = a+T/ay ( - h > x > -a), 
and therefore $; = $? ( - h  > z > -m), 

sinceq5T-toasz-t-co. . -  
Substituting (20) into (26) and using (21)-(24) one gets a pair of coupled 

integral equations : 

J --m J --oo 

00 (pcospu+asinpu) (pcospz+asinpz)dp 
, Wa) 

S O  P(P2 + a2) 

. ( 2 6 b )  
(p cospu + a sinpu) (p cospz + a sinpz) dp 

S O  P(P2 + a2) 

This pair of integral equations can be decoupled (Hirata 1972 b )  into two integral 
equations of the type 

h(v) (h  < 21 < 03) 
v(u)du 

for which the solution is known (Ursell 1947). Therefore the Fourier transform 
of the dipole density can be obtained as well as the functions X(p) and C(p). 

In the next section a simple example is solved and some numerical results 
presented. 

4. Free-surface elevation for a ship of constant draft 
If the ship has a constant draft in the bow region, the calculations are greatly 

simplified. If only the leading term is taken, the dynamic free-surface condition 
gives the free-surface elevation near the ship as 

6 = ( - Ul9) $ Z ( G  0, O ) ,  
F L Y  71 19 
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or 

0 0.5 1 .o 1.5 2.0 2.5 3.0 3.5 
X 

FIGURE 3. Non-dimensional free-surface elevation near the bow. 

and using (1 8) one gets 
m 

C(x, & 0 )  = T - - jm dkeikXk{[u~a- iuRa]+/  [S(p)+iC(p)]}pdp.  (27 )  

It can be shown (Hirata 1972b) that the contribution to the inverse Fourier 
transform when k is in the neighbourhood of zero is negligible, therefore one can 
neglect the contribution of FR = d ( k )  in the body boundary condition. Using this 
fact, after decoupling the system of equations (26) the desired functions in (27) 
can be calculated: 

g 2 n  -a  0 

[I,(ah) + L,(ah)], 
nUb‘(0) 

= - 
ak n212,(ah) + K2,(ah) 

where I,(%), K,(x) and Jl(x) are Bessel functions and L l ( x )  is the modified Struve 
function (all defined according to  Abramowitz & St,egun 1964, chap. 9). 
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For purposes of numerical calculation, the following non-dimensional co- 
ordinates are used: 

Figure 3 shows a plot of H/b’(O) us. X .  Equations (27 )  were used for the computa- 
tions. This figure shows also an asymptotic estimate of the free-surface elevation 
for large X .  This asymptotic estimate is of the form presented below and was 
obtained from (27) using a result from the theory of Fourier transforms (LighthiII 
1964, theorem 19): 

H/b’(O) N 12/X5 as X -+ co. 

The author is indebted to Prof. T. F. Ogilvie for many valuable suggestions 
during the research work and also to Prof. F. C. Michelsen, who discussed the 
subject of the paper. 
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